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In this paper we consider a network of Boolean agents that compete for a limited resource. The agents play
the so called generalized minority game where the capacity level is allowed to vary externally. We study the
properties of such a system for different values of the mean connedtivifythe network, and show that the
system withK =2 shows a high degree of coordination for relatively large variations of the capacity level.
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Complex adaptive systems composed of agents under miar, it was established that coordination still arises out of
tual influence have attracted considerable interest in recembcal interactions, and the system as a whole achieves “better
years. A few examples that have been studied extensively atban random” performance in terms of the utilization of re-
genetic regulatory networkl], ecosystem$2], and finan-  sources. Note that although the minority game was intro-
cial markets[3]. These kinds of systems often display rich duced as a toy model of the financial markets, it can serve as
and complex dynamics and have been shown to possess gla-general paradigm for resource allocation and load balanc-
bal properties that cannot be simply deduced from the detailgyg in multiagent systems.
of the microscopic behavior of individual agents. In all previous studies the capacity level has been fixed as

The minority game4] (MG) is one of the simplest ex- an external parameter, so the environment in which the
amples of a complex dynamical system. It was introduced bygents compete is stationary. In many situations, however,
Challet and Zhang as a simplification of Arthur’s El Farol agents have to operate in dynanfand in general, stochas-
Bar attendance problef]. The MG consists of\ agents tic) environments. It is interesting to see if coordinated be-
with bounded rationality that repeatedly choose between twaavior still emerges, and to what degree agents can adapt to
alternatives labeled 0 and(&.g., staying at home or going to the changing environment. We address this problem in the
the baj. At each time step, agents who made the minoritypresent paper. Namely, we study a system of boolean agents
decision win. In the generalized minority garféd, the win-  playing a generalized minority game, assuming that the ca-
ing group is 1 (0) if the fraction of the agents who chosepacity level is not fixed but varies with timey(t)= 7,

“1” is smaller (greatey than the capacity leveh,0< <1 + 71(t), where74(t) is a time dependent perturbation. The
(for »=0.5, the game reduces to the traditional MGach  framework of the interactions is based on Kauffman NK ran-
agent uses a set & strategies to decide its next move and dom boolean netfl], where each agent gets its input frén
reinforces strategies that would have predicted the winning@ther randomly chosen agents, and maps the input to a new
group. A strategy is simply a lookup table that prescribes atate according to a boolean functionkofzariables, which is
binary output for all possible inputs. In the original version also randomly chosen and quenched throughout the dynam-
of the game, the input is a binary string containing thehast ics of the system. The generalization we make is that agents
outcomes of the game, so the agents interact by sharing tlege allowed to adapt by having more than one Boolean func-
same global signal. If the agents choose either action witlion, or strategy, and the use of a particular strategy is deter-
probability 1/2(the random choice gamethen, on average, mined by an agent based on how often it predicted the win-
the number of agents choosing “Ihenceforth referred to as ning group throughout the game. Note that this approach is
attendanceis (N—1)/2 with standard deviatioo=+/N/2 in  very different from adaptation through evolution studied pre-
the limit of largeN. The most interesting phenomenon of the viously in the context of the minority modé13].

minority model is the emergence of a coordinated phase, Our main observation is that networks with smigll(K
where the standard deviation of attendance, the volatility<5) adapt to a certain degree to the changes in the capacity
becomes smaller than in the random choice game. The coodlevel. In particular, networks witiK=2 show a tendency
dination is achieved for memory sizes for which the dimen-towards self-organization into a phase characterized by small
sion of the reduced strategy space is comparable to the nurfluctuations, hence, an efficient utilization of the resource,
ber of agents in the systefid, 8], 2™~ N. It was later pointed even for relatively large variations in the capacity leyét).

out [9] that the dynamics of the game remains mostly un-Note, that in the Kauffman nets with>2 the dynamics of
changed if one replaces the string with the actual historiethe system is chaotic with an exponentially increasing length
with a random one, provided that all the agents act on thef attractors as the system size grows, while Korx2 the
same signal. Analytical studies based on this simplificatiometwork reaches a frozen configuration. The ddse2 cor-
have revealed many interesting properties of the minorityesponds to a phase transition in the dynamical properties of
model[10,11]. the network and is often referred as the “edge of the chaos”

In addition to the original MG, different versions of the [1]. We would like to reiterate, however, that our system is
game where the agents interact using local information onlylifferent from a Kauffman network since the agents have an
(cellular automat412], evolving random Boolean networks internal degree of freedom, characterized by their strategies.
[13], personal historiefl4]), have been studied. In particu- Specifically, our system does not necessarily have periodic
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attractors, while in Kauffman nets periodic attractors are
guaranteed to exist due to the finite phase space an
guenched rules of updating.

Let us consider a set dfl boolean agents described by
“spin” variables s;={0,1},i=1, ... N. Each agent gets its
input from K other randomly chosen agents, and maps the
input to a new state:

Si(t+ 1) =Fl(5,(1),8,(1), - - - S, (1), (1)

wheres,,i=1,... K are the set of neighbors, arfg/,]

=1,...,S are randomly chosen boolean functioftalled
strategies hereafteused by theth agent. For each strategy
F!, the agent keeps a score that monitors the performance ¢
that strategy, addingsubtracting a point if the strategy pre-
dicted the winningloosing side. Let the “attendanceA(t)
be the cumulative output of the system at tirh@\(t)
=EiN=lsi(t). Then the winning choice is “1" if A(t)
<Nz(t), and “0” otherwise. Those in the wining group are
awarded a point while the others loose one. Agents play the—
strategies that have predicted the winning side most oftenz
and the ties are broken randomly.

As a global measure of optimality we considé(t)
=A(t) —Nn(t), that describes the deviation from the opti-
mal resource utilization. We are primarily interested in the
cumulative “waste” over a certain time window:

1 tO%fT
o=1\/= > 81?2 )
T ¢

=t0

For »4(t)=0 this quantity is simply the volatility as defined

in the traditional minority game. We compare the perfor-
mance of our system to a default random choice game, d
fined as follows: assume that the agents are told what is the
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FIG. 1. A segment of the attendance time series#(r) =0.5
+0.1 sin(27t/T), T=500; (a) Boolean network witlK=2, (b) tra-
ditional (generalizegl minority game withm=6. The insets show
She respective time series of the deviatié(t).

capacity(t) at timet, and they choose to go to the bar with e attendanca(t) for a system of sizé= 1000, network
probability »(t). In th|s' case the main attendar)ce will be connectivityK =2, and a sinusoidal perturbation (t). One
close tor(t)N at each time step, and the fluctuations around;an see that the system is efficient—it adapts very quickly to

the mean are given by the standard deviation,

changes in the capacity level. The inset shows the time series

1 (torT of the deviations(t). Initially there are strong fluctuations,
0 - .
og:N_j dt’ (t")[1— 5(t")]. (3)  hence poor utilization of the resource, but after some tran-
0

TJt

sient time the system as a whole adapts and the strength of

the fluctuations decreases. In particular, for the system sizes
We performed intensive numerical simulations of the sysconsidered in this papgup to N=10% ¢ is considerably
tem described above, with the number of agents rangingmaller than the standard deviatiog in the random choice
from 100 to 10, and for network connectivit)K ranging  game. This should not hold for sufficiently lartye however,
forms for the perturbatiom,(t), in this paper we consider the random choice game,N. Note also, that the agents
periodic perturbations only. For eadty a set of strategies haye information only about the winning choice, but not the
was chosen for each agent randomly and independently fromapacity level. This suggests that the particular form of the

K

a pool of 2" possible boolean functions, and was guenchegerturbation may not be important as long as it meets some
throughout the game. In all simulations we us®d?2 strat- general criteria for smoothness.
egies per agent. Starting from a random initial configuration, We also studied the effect of the changing capacity level
the system evolved according to the specified rules. The duin the traditional(generalizeyl minority model with publicly
ration of the simulatiorT, was determined by the particular available information about the lastoutcomes of the game.
choice of5(t). Depending on the amplitude of the perturba- We plot the attendance and deviation time series for a system
tion, we run the simulations for 10 to 20 periods, and usuallywith a memory sizen=6 (corresponding to the minimum of
used the data for the last two periods to determine o) in Fig. 1(b). One can see that in this case the system also
Figure X&) shows a typical segment of the time series ofreacts to the external change; however, the overall perfor-
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FIG. 3. ¢®/N vs the network connectivity for different system
8 sizes andy(t) = 0.5+ 0.15 sin(27t/T), T=1000. Inset plot shows the
Do scaling relationship betweem and N for K=2. Average over 16
4 runs has been taken.

between attendance and the new capacity level after a
“jump.” Remarkably, one can get rid of the dephasing effect
simply by introducing an upper and lower bounds for the
0 2500 5000 strategy scores, thus, limiting their maximum difference.

t In Fig. 3 we plot the variance per agent vs network con-

FIG. 2. Time series of attendané®p) and the gap in strategy Nectivity K, for system sized\=100,500,1000. For eadk
scores(botton) for the square-shaped capacity level variations ~ We performed 32 runs and averaged results. Our simulations
suggest that the details of this dependence are not very sen-

mance in terms of efficiency of resource allocation, as de§itive to th'e partipular form of the pertyrbati(m(t), and thg
' general picture is the same for a wide range of functions,

scribed byo, is much poorer compared to the previous case?~ ™
Another interesting observation is that if we run the simu-p.rovlded that t_hey are ST“O‘?”‘ enqugh. As we glready men-
lations long enough, the response of the system to the changgmed’ the variance attains Its minimum foe=2, '”d?pe.”'
ing capacity level gets “out of phase” with the perturbation, ent of the number of agents in the system. For .b'ggar

leading to a gradual deterioration in the performance of thgaturates at a value that depends on the_ amplitude of the
system, and the time during which the efficient phase i erturbation and on the number of agents in the system. We

stable strongly depends on the rate of the changes in t gund that for largeK the time series of the attendance

capacity level, as well as on the number of agents in the
system. Our results suggest that this effect is due to the in- %4 ' ' '
creasing gap in strategy scores. As the gap in strategy score
grows, it becomes increasingly difficult for an agent to aban- ;
don a previously more successful strategy that has stoppe 451 : ..
performing well as the capacity level changes, because i . .
takes longer for a previously loosing strategy to accumulate : Lo
enough points to be played. We demonstrate this effect on Z ' Lo
simpler, squarelike perturbation depicted in Fig. 2. One cane~ ~027 = -y
see that each time the capacity “jumps” to its new value, it o “ o
takes longer for the agents to adapt to the change. To illus
trate why this happens, we plot the evolution of the gap o1l ..
(difference AU(t) in strategy scores for one agent. For ’ iﬁ.. . é,’*‘
pedagogical reasons, we chose an agent with the simples Hﬂ#!’"‘ .
anticorrelated strategies: one of whose strategies alway
chooses “0” and the other “1,” regardless of input. As the 0.0 ; : : .
. . . . . . 0.65 0.7 0.75 0.8 0.85 09
amplitude of the oscillations in score difference grows in P
time, it takes longer for the agent to switch between strate-
gies. The same is true for the difference between strategy FIG. 4. Standard deviation per agent Ror K=3 networks:
scores averaged over all agents, resulting in a growing lafy=1000, 7(t)=0.5+0.15 sin(2t/T), T=1000.
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closely resembles the time series in the absence of perturb&,=1/2+1/2\/1—-2/K. To test our hypothesis, we studied
tion. This implies that for larg the agents do not “feel” the properties of networks witkK =3 for a range of homo-
the change in the capacity level. Consequently, the standagkneity paramete®. In Fig. 4 we ploto®/N vs the homoge-
deviation increases linearly with the number of agents in theneity parameteP. One can see that the optimal resource
system,ocxN. For K=2, on the other handy increases allocation is indeed achieved in the vicinity of the,
considerably slower with the number of agents in the systenr=0.78.

oxN?,y<1 (see the inset in Fig.)30ur results indicate that
the scaling(i.e., the exponenty) is not universal and de-
pends on the perturbation.

Though the results presented here look very interestin

In conclusion, we studied a network of adaptive boolean
agents competing in a dynamic environment. We established
that networks with connectivitK=2 can be extremely

daptable and robust with respect to capacity level changes.

we currently do not have an analytical theory for the ob-Ior K>2 the coordination can be achieved by tuning the

served emergent coordination.
minority game, where global interactions and the Markovial

tion, our model seems to be analytically intractable due t
the explicit emphasis on local information processing.

4

approximation allow one to construct a mean field descrip

We

In contrast to the traditionaiomogeneity parameter to its critical value. Remarkably, ad-

aptation happens without the agents knowing the capacity
level. Interestingly, the system that uses local information is
much more efficient in a dynamic environment than a system
Yhat uses global information. This suggests that our model

may serve as a feasible mechanism for distributed resource

strongly believe, however, that the adaptability of the net
works with K=2 is related to the peculiar properties of the
corresponding Kauffman nets, and particularly, to the phase The authors would like to thank D. Tsigankov, J. Crutch-
transition between the chaotic and frozen phases. It is knowfield, and C. Shalizi for their helpful suggestions. The re-

“allocation in multiagent systems.

[15] that the phase transition in the Kauffman networks ca
be achieved by tuning the homogeneity paramtdhat is

the fraction of 1's or O’s in the output of the boolean func-

tions (whichever is greater with the critical value given by
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